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I. DETAILS

A. The Voxel Interaction of LiDAR and Camera

Fig. 1 (a) illustrates the challenge of aligning images
and point clouds caused by inaccurate extrinsic parameters.
Direct geometric alignment is difficult to achieve. To address
the accumulation of errors resulting from misalignment, we
propose GSFusion. This method searches for nearby features
to ensure both geometric and semantic alignment, enabling
each LiDAR voxel feature to interact with K neighboring
lifted pixel features in the fusion process. This expands
the perception field, allowing for a more comprehensive
and robust fusion of image and point features. Furthermore,
Fig. 1 (b) highlights the impact of the sparsity of LiDAR
point clouds on voxel interaction with the camera. To address
this, the rendering process ensures dense representations for
LiDAR features, camera features, or LiDAR-camera features,
as depicted in Fig. 1 (c). This ensures sufficient voxel
interaction and improves overall performance.

(a) (b) (c)

Fig. 1. (a) illustrates the inaccurate calibrations between the projected
points and the corresponding images. (b) displays the sparse distribution of
projected LiDAR points. (c) showcases the rendered depth obtained from
the fusion of LiDAR-camera features.

B. Other Implementation Details

In our implicit volume rendering regularization, we em-
ploy two Multi-Layer Perceptron (MLP) networks as our
density head and color head. These MLP networks are
utilized to generate the density grid and color grid from
the sampled frustum features. The color head consists of
three layers of MLP, while the density head consists of
either one layer of MLP or a Linear layer. This configuration
strikes a balance between training memory requirements and
rendering performance.
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C. Evaluation Metrics

IoU metrics. The Intersection over Union (IoU) is a metric
used to determine whether a voxel is occupied or empty [1],
[2]. It treats all occupied voxels as the occupied class and all
others as the empty class. The IoU is calculated as follows:

IoU =
TPo

TPo + FPo + FNo
, (1)

where TPo, FPo, FNo represent the number of true pos-
itives, false positives, and false negatives of the occupied
class, respectively.
mIoU metrics. The mean Intersection over Union (mIoU) is
a metric that calculates the average IoU for each semantic
class. It is defined as follows:

mIoU =
1

Nc

Nc∑
c=1

TPc

TPc + FPc + FNc
, (2)

where TPc, FPc, FNc represent the number of true posi-
tives, false positives, and false negatives for class c, respec-
tively, and Nc is the total number of classes.

II. MORE RESULTS

More Quantitative Results on NuScenes dataset. We sup-
ply the 3D semantic occupancy prediction results on different
voxel resolutions. As the openoccupancy benchmark [2], the
voxel resolution is 0.2m in a volume of 512 × 512 × 40
for occupancy predictions. As presented in Tab. I, we test
other method on nuScenes-occupancy validation set [1],
[2]. our Co-Occ method obtain 1.8% mIoU improvement
among the camera-LiDAR fusion-based M-CONet. Besides,
the scores of most semantic classes have a large margin
improvement. These experiments validate the effectiveness
of our method that not only obatin better performance on
one voxel resolution.
More Visualization Results on NuScenes Dataset. Due
to space constraints, we have included additional visual
results in Table I. These results demonstrate that our method
has more precise details compared to the camera-only
method [9], while also achieving greater consistency than
other LiDAR-camera fusion-based methods [2]. Furthermore,
the effectiveness of our methods in challenging conditions is
validated through the video demo.
More Visualization Results on SemanticKITTI Dataset.
Similarly, we present additional qualitative results using the
SemanticKITTI validation dataset in Fig. 3. Our method’s
semantic predictions clearly outperform not only in dynamic



TABLE I
3D SEMANTIC OCCUPANCY PREDICTION RESULTS ON NUSCENES-OCCUPANCY VALIDATION SET. WE REPORT THE GEOMETRIC METRIC IOU,

SEMANTIC METRIC MIOU, AND THE IOU FOR EACH SEMANTIC CLASS. THE C, D, AND L DENOTES CAMERA, DEPTH, AND LIDAR, RESPECTIVELY.
BOLD REPRESENTS THE BEST SCORE.
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MonoScene [3] C 18.4 6.9 7.1 3.9 9.3 7.2 5.6 3.0 5.9 4.4 4.9 4.2 14.9 6.3 7.9 7.4 10.0 7.6
TPVFormer [4] C 15.3 7.8 9.3 4.1 11.3 10.1 5.2 4.3 5.9 5.3 6.8 6.5 13.6 9.0 8.3 8.0 9.2 8.2
3DSketch [5] C&D 25.6 10.7 12.0 5.1 10.7 12.4 6.5 4.0 5.0 6.3 8.0 7.2 21.8 14.8 13.0 11.8 12.0 21.2
AICNet [6] C&D 23.8 10.6 11.5 4.0 11.8 12.3 5.1 3.8 6.2 6.0 8.2 7.5 24.1 13.0 12.8 11.5 11.6 20.2
LMSCNet [7] L 27.3 11.5 12.4 4.2 12.8 12.1 6.2 4.7 6.2 6.3 8.8 7.2 24.2 12.3 16.6 14.1 13.9 22.2
JS3C-Net [8] L 30.2 12.5 14.2 3.4 13.6 12.0 7.2 4.3 7.3 6.8 9.2 9.1 27.9 15.3 14.9 16.2 14.0 24.9
M-CONet [2] C&L 29.5 20.1 23.3 13.3 21.2 24.3 15.3 15.9 18.0 13.3 15.3 20.7 33.2 21.0 22.5 21.5 19.6 23.2

Co-Occ (Ours) C&L 30.6 21.9 26.5 16.8 22.3 27.0 10.1 20.9 20.7 14.5 16.4 21.6 36.9 23.5 25.5 23.7 20.5 23.5

GTCo-Occ (Ours)M-CONetBACK_LEFT BACK BACK_RIGHT SurroundOccLiDAR sweeps
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Fig. 2. The additional qualitative comparisons results on nuScenes validation set [10]. The leftmost column shows the input surrounding images and
LiDAR sweeps, the following three columns visualize the 3D semantic occupancy prediction from SurroundOcc [9] (SurroundOcc predicts results using
only cameras), M-CONet [2], our Co-Occ, and the annotation from [9]. Better viewed when zoomed in.

objects like cars but also in capturing the complementary aspects of road and vegetation. This showcases the effec-



Mono image LiDAR sweeps
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Fig. 3. The additional qualitative comparisons results on SemanticKITTI validation set. The input monocular image and LiDAR sweeps are shown on
the left and the 3D semantic occupancy results from OccFormer [11] (OccFormer predicts results using only mono image), M-CONet [2], our Co-Occ,
and the annotations are then visualized sequentially. Better viewed when zoomed in.

tiveness and versatility of our approach.
Video Demo. To provide a comprehensive understanding of
our method and showcase the dynamic performance of our
results, we have prepared a video demo. This demo visually
presents our continuous video visualization results, allowing
you to observe our method in action and gain a deeper
understanding of its process.
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